Intro to Malicious Security

CS 598 DH

Today’s objectives

Define malicious security
Introduce notion of fairness
Introduce notion of abort

Prove a contrived protocol Is secure In the
malicious model

Why malicious security Is harder

Why malicious security Is harder

Why malicious security Is harder

The adversary is now an arbitrary program.
We cannot control its behavior, except by making
clever use of cryptography.

Why malicious security Is harder

—

ABORT!!

Why malicious security Is harder

—

ABORT!!

X

We cannot force the adversary to respond

Fairness: “if one party receives
output, then everyone does”

Guaranteed Output Delivery: “each
party will obtain the output”

Fairness: “if one party receives
output, then everyone does”

Guaranteed Output Delivery: “each
party will obtain the output”

Impossible (in general) without
an honest majority

Limits on the Security of Coin Flips
When Half the Processors are Faulty
(Extended Abstract)

Richard Cleve
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

1. Introduction

Protocols which allow an asynchronous network of pro-
cessors to agree on a random (unbiased) bit are proposed
in (1] and [4]. It is claimed that (assuming a trapdoor
function exists), if less than half of the processors are
faulty then the correct processors will still agree on a bit
whose bias is negligibly small (when the running time of
the processors is poly(n) the bias is smaller than O(%)
for all k). If half the processors are faulty then these
protocols are no longer effective: the bits output by the
correct processors may be heavily biased.

We prove that the above protocols are optimal in the
sense that no protocol exists which tolerates faults in at
least half of the processors. The result is very general
because few restrictions are made on the types of com-
munication allowed between correct processors (such as
private channels and global channels) and the correct pro-
cessors only need to agree on a bit in a weak probabilistic
sense. Also, the faulty processors do not require very
much power. They can privately communicate with each
other but they cannot read messages which are exchanged
privately between two correct processors.

An interesting instance of the problem arises when

the number of processors is fixed at two and one of them

Permission to copy without fee all or part of this material is granted
provided that the copees are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permassion,

© 1986 ACM 0-89791-193-8/86/0500/0364 $00.75

may be faulty. This is the so-called coin flipping by tele-
phone problem which is proposed in [3] and cannot be
solved with very high security, There are protocols for
2-processor coin tossing which (assuming that a trapdoor
function exists) achieve a weaker level of security (these
are discussed in section 4). The processors run in poly(n)
time and the bias of the bit which a correct processor out-
puts is less than O(2) for some fixed k. More precisely,
the bias will be less than O(J:) where r is the number
of rounds of communication in the protocol. For many
applications (such as secret exchanging [5|) this weaker
level of security is sufficient. In section 2 it is proven that
no 2-processor protocol exists for which the bias of the
output of a correct processor is less than O(}).

In [4] it is pointed out that multiprocessor coin toss-
ing schemes have their application in the problem of ran-
domly choosing a leader in a network of processors and
the problem of fairly allocating resources within a net-

work.
2. 2-Processor Coin Tossing Schemes

In 2.1, 2-Processor coin tossing schemes are defined
precisely and, in 2.2, a lower bound on the security of
2-processor coin tossing schemes is proven.

2.1 Definitions

A 2-processor bit selection scheme is a sequence of
pairs of processors {(A", B"*)}3 | with the following prop-
erties. For each n, A™ and B™ each have access to a pri-
vate supply of random bits and they can communicate
with each other. If the system is executed then A", B"
will output bits a, b (respectively) within poly(n) time.

Limits on the Security of Coin Flips
When Half the Processors are Faulty
(Extended Abstract)

Richard Cleve
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

1. Introduction

Protocols which allow an asynchronous network of pro-
cessors to agree on a random (unbiased) bit are proposed
in (1] and [4]. It is claimed that (assuming a trapdoor
function exists), if less than half of the processors are
faulty then the correct processors will still agree on a bit
whose bias is negligibly small (when the running time of
the processors is poly(n) the bias is smaller than O(%)
for all k). If half the processors are faulty then these
protocols are no longer effective: the bits output by the

may be faulty. This is the so-called coin flipping by tele-
phone problem which is proposed in [3| and cannot be
solved with very high security, There are protocols for
2-processor coin tossing which (assuming that a trapdoor
function exists) achieve a weaker level of security (these
are discussed in section 4). The processors run in poly(n)
time and the bias of the bit which a correct processor out-
puts is less than O(%) for some fixed k. More precisely,
the bias will be less than O(J:) where r is the number

of rounds of communication in the protocol. For many

10

Limits on the Security of Coin Flips
When Half the Processors are Faulty
(Extended Abstract)

Richard Cleve
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

1. Introduction

Protocols which allow an asynchronous network of pro-
cessors to agree on a random (unbiased) bit are proposed
in (1] and [4]. It is claimed that (assuming a trapdoor
function exists), if less than half of the processors are
faulty then the correct processors will still agree on a bit
whose bias is negligibly small (when the running time of
the processors is poly(n) the bias is smaller than O(%)
for all k). If half the processors are faulty then these
protocols are no longer effective: the bits output by the

may be faulty. This is the so-called coin flipping by tele-
phone problem which is proposed in [3| and cannot be
solved with very high security, There are protocols for
2-processor coin tossing which (assuming that a trapdoor
function exists) achieve a weaker level of security (these
are discussed in section 4). The processors run in poly(n)
time and the bias of the bit which a correct processor out-
puts is less than O(2) for some fixed k. More precisely,
the bias will be less than O(J:) where r is the number

of rounds of communication in the protocol. For many

11

Limits on the Security of Coin Flips
When Half the Processors are Faulty
(Extended Abstract)

Richard Cleve
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

1. Introduction

Protocols which allow an asynchronous network of pro-
cessors to agree on a random (unbiased) bit are proposed
in (1] and [4]. It is claimed that (assuming a trapdoor
function exists), if less than half of the processors are
faulty then the correct processors will still agree on a bit
whose bias is negligibly small (when the running time of
the processors is poly(n) the bias is smaller than O(%)
for all k). If half the processors are faulty then these
protocols are no longer effective: the bits output by the

may be faulty. This is the so-called coin flipping by tele-
phone problem which is proposed in [3| and cannot be
solved with very high security, There are protocols for
2-processor coin tossing which (assuming that a trapdoor
function exists) achieve a weaker level of security (these
are discussed in section 4). The processors run in poly(n)
time and the bias of the bit which a correct processor out-
puts is less than O(%) for some fixed k. More precisely,
the bias will be less than O(J:) where r is the number

of rounds of communication in the protocol. For many

ldea: One party will learn the output first. We
cannot force this party to send the last message

12

Limits on the Security of Coin Flips
When Half the Processors are Faulty
(Extended Abstract)

Richard Cleve
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

1. Introduction

Protocols which allow an asynchronous network of pro-
cessors to agree on a random (unbiased) bit are proposed
in (1] and [4]. It is claimed that (assuming a trapdoor
function exists), if less than half of the processors are
faulty then the correct processors will still agree on a bit
whose bias is negligibly small (when the running time of
the processors is poly(n) the bias is smaller than O(%)
for all k). If half the processors are faulty then these
protocols are no longer effective: the bits output by the

may be faulty. This is the so-called coin flipping by tele-
phone problem which is proposed in [3| and cannot be
solved with very high security, There are protocols for
2-processor coin tossing which (assuming that a trapdoor
function exists) achieve a weaker level of security (these
are discussed in section 4). The processors run in poly(n)
time and the bias of the bit which a correct processor out-
puts is less than O(Z%) for some fixed k. More precisely,
the bias will be less than O(J:) where r is the number

of rounds of communication in the protocol. For many

ldea: One party will learn the output first. We
cannot force this party to send the last message

Our definition of malicious security

13

will respect this impossibility

Why malicious security Is harder

Why malicious security Is harder

Why malicious security Is harder

What can go wrong?

What can go wrong?

Send the wrong message

What can go wrong?

Send the wrong message
Refuse to send a message

What can go in terms of outcomes”?

What can go in terms of outcomes”?

Cause honest party to output wrong answer
Learn too much information about other party’s input

Prevent honest party from learning output

21

What can go in terms of outcomes”?

Cause honest party to output wrong answer
Learn too much information about other party’s input

Prevent honest party from learning output

22

What can go in terms of outcomes”?

Cause honest party to output wrong answer
Learn too much information about other party’s input

Prevent honest party from learning output x

23

Semi-honest Security

Trusted
T'hird Party

Our definition of semi-honest security compares
our real-world protocol to a (very simple) idealized
protocol involving a trusted third party.

Malicious security Is the same

Semi-honest Security Simulator

Real Ideal ‘

ﬁ
. S
Viewgob(x, y) =1y, my,m,... | Output%i;’g(x, y) =1y, mym,.. }

These should “look the same”

Malicious Security Simulator

Real Ideal ‘

@

—_—
—_—

£

—

These Interactions should “look the same”

Malicious security ideal-world execution

' abort @
Y

Trusted
T'hird Party

Malicious security ideal-world execution

' continue, y’ @

Trusted
T'hird Party

Malicious security ideal-world execution

T'hird Party

Malicious security ideal-world execution

T'hird Party

Why do we send output to adversary, and not honest party?

Malicious security ideal-world execution

T'hird Party

Why do we send output to adversary, and not honest party?

We need to model that any real-world protocol is necessarily unfair

31

Malicious security ideal-world execution

Malicious security ideal-world execution

feeyy Third Party

_

' continue

Malicious security ideal-world execution

feeyy Third Party

_

' continue

honest party outputs

Jx,y')

Malicious security ideal-world execution

feeyy Third Party

_

' continue

honest party outputs adversary outputs... ?

Jx,y')

Malicious security ideal-world execution

feeyy Third Party

_

' continue

honest party outputs adversary outputs... ?

Jx,y) whatever it wants

How To Simulate It — A Tutorial on the Simulation
Proof Technique*

Yehuda Lindell

Dept. of Computer Science
Bar-Ilan University, ISRAEL
lindell@biu.ac.il

April 25, 2021

Abstract

One of the most fundamental notions of cryptography is that of simulation. It stands behind
the concepts of semantic security, zero knowledge, and security for multiparty computation.
However, writing a simulator and proving security via the use of simulation is a non-trivial task,
and one that many newcomers to the field often find difficult. In this tutorial, we provide a
guide to how to write simulators and prove security via the simulation paradigm. Although we
have tried to make this tutorial as stand-alone as possible, we assume some familiarity with the
notions of secure encryption, zero-knowledge, and secure computation.

Keywords: secure computation, the simulation technique, tutorial

*This tutorial appeared in the book Tutorials on the Foundations of Cryptography, published in honor of Oded
Goldreich’s 60th birthday.

Malicious Security

—=®

Malicious Security

—
o =S @ ESe

A protocol 11 securely realizes a functionality f in the presence of
a malicious adversary if for every real-world adversary f
corrupting party 1, there exists an ideal-world adversary & ; (a

simulator) such that for all inputs x, y the following holds:

Realg(x, y) & Idealf;i(x, y)

39

Malicious Security

—
o =S @ ESe

A protocol 11 securely realizes a functionality f in the presence of
a malicious adversary if for every real-world adversary f
corrupting party 1, there exists an ideal-world adversary & ; (a

simulator) such that for all inputs x, y the following holds:

Realg(x, y) & Idealf;i(x, y)

N\ 7/

Ensemble of outputs of each party

Realg(x, y) & Idealf;i(x,),

Adversary &/ does whatever it wants and outputs whatever it wants...

41

Realg(x, y) & Idealf;i(x,),

Adversary &/ does whatever it wants and outputs whatever it wants...

How do we construct a simulator that outputs something indistinguishable?

42

Realg(x, y) & Idealf;i(x,),

Adversary &/ does whatever it wants and outputs whatever it wants...

How do we construct a simulator that outputs something indistinguishable?

... for every real-world adversary &4 ...,
there exists a simulator & ...

43

Realg(x, y) & Idealf;i(x,),

Adversary &/ does whatever it wants and outputs whatever it wants...

How do we construct a simulator that outputs something indistinguishable?

... for every real-world adversary &4 ...,
there exists a simulator & ...

Our simulator only needs to handle a specific, quantified <A

44

Realg(x, y) & Idealf;i(x,),

Adversary &/ does whatever it wants and outputs whatever it wants...

How do we construct a simulator that outputs something indistinguishable?

... for every real-world adversary &4 ...,
there exists a simulator & ...

Our simulator only needs to handle a specific, quantified <A

Think of & as a program that & can call as
many times as it would like

45

Remark: Syntactic Convenience

Remark: Syntactic Convenience

! In CONGRESS Juiyy o
ADECLARATION

St RAPRESENTATIVEE ¢

(INITED ST

FATES OF AMERICA

Ix CENRERAL CONGRESS o

W=

JOHN HANCOCK; P

R st

47

Remark: Syntactic Convenience

If adversary’s message does not
syntactically match the protocol,
we treat that as an abort

TR e e——

48

One big difference between semi-honest and malicious

The notion of “input” of the
adversary becomes murky

One big difference between semi-honest and malicious

The notion of “input” of the
adversary becomes murky

Our malicious simulator will not be given
direct access to the adversary’s “input”

| ecurity
of of Malicious S
ical Pro
Typica

Typical Proof of Malicious Security

— @ —0

Typical Proof of Malicious Security

& tricks & into thinking it is in
the real-world protocol

... and then outputs
whatever &/ outputs

53

Typical Proof of Malicious Security

— @ —0

_ L What does this have to do with
& tricks & into thinking it is in oreventing attacks?

the real-world protocol

... and then outputs
whatever &/ outputs

54

Typical Proof of Malicious Security

— @ —0

_ L What does this have to do with
& tricks & into thinking it is in oreventing attacks?

the real-world protocol

Intuition: It is only possible for & to
... and then outputs deceive if the protocol restricts
whatever &f outputs 2’s behavior in certain ways

55

Today’s objectives

Define malicious security
Introduce notion of fairness
Introduce notion of abort

Prove a contrived protocol Is secure In the
malicious model

